我们研究的重点在于实验探测和调控新奇量子材料的电子结构和层展现象,包括拓扑量子材料,非常规超导,二维材料和强关联系统
我们以前的研究揭示了这些新型材料具有显着的电子和拓扑性质
包含
•在具有一维长程序的层状范德瓦尔斯材料NbSi0.45Te2中发现一维无质量狄拉克费米子
•直接观察体Weyl锥体,表面费米弧及其在过渡金属单磷化物中的对应关系,作为Weyl半金属的实验证据[1-3]。
•直接观察SmB6中的金属表面状态及其螺旋旋转结构,作为Kondo拓扑结构的证据[4-6]。
随着实验技术和样品质量的进一步提高,我们的目标是探索更多奇特的量子现象,从相关的拓扑半金属到具有不寻常机制或非平凡拓扑性质的超导体。
[1] T. Y. Yang*, Q. Wan*, et. al. N. Xu§ Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order . Nature Material 19, 27-33 (2020)
[2] B.Q.L*, N. Xu*, H.M.W* et. al., “Observation of Weyl nodes in TaAs.” Nature Physics 11, 724-727 (2015).
[3] N. Xu*§, H.M.W* et. al., “Observation of Weyl nodes and Fermi arcs in TaP.” Nature Communications 7, 11006 (2016).
[4] N. Xuet. al., Distinct evolutions of Weyl fermion quasiparticles and Fermi arcs with bulk band topology in Weyl semimetals. Physical Review Letters 118, 106406 (2017).
[5] N. Xu§et. al., “Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator.” Phys. Rev. B 88, 121102(R) (2013);
[6] N. Xu§et. al., “Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator.” Nature Communications 5, 4566 (2014).
[7] N. Xu§et. al., “Spin- and angle-resolved photoemission on the topological Kondo Insulator candidate: SmB6”, J. Phys.: Condens. Matter, 28 363001 (2016). (Invited Review article)
(FIRST*-AUTHOR, CORRESPONDING§-AUTHOR)